Because physics majors encounter conceptual difficulties too: Refining an inquiry-based approach to teach intermediate mechanics

Bradley S. Ambrose

Associate Professor, Department of Physics Grand Valley State University E-mail: *ambroseb@gvsu.edu*

Supported by NSF grants DUE-0441426 and DUE-0442388

MIAAPT Fall 2006 UM-Dearborn

From previous research at the introductory level

Many students have difficulty discriminating between a **quantity** and its **rate of change:**

- position vs. velocity, and velocity vs. acceleration *
- height vs. slope of a graph **
- electric field vs. electric potential [†]
- electric (or magnetic) flux vs. change in flux
- ...and many other examples

^{*} Trowbridge and McDermott, Am. J. Phys. **48** (1980) and **49** (1981).

^{**} McDermott, Rosenquist, and van Zee, Am. J. Phys. 55 (1987).

Allain, Ph.D. dissertation, NCSU, 2001; Maloney et al., Am. J. Phys. Suppl. 69 (2001).

As a *physics education researcher* teaching intermediate mechanics

The following research questions arise:

- To what extent have students developed a functional understanding of fundamental concepts in mechanics?
- What difficulties arise when students encounter topics in intermediate mechanics? To what extent do those difficulties have their roots in fundamental concepts?

What we teach about conservative forces

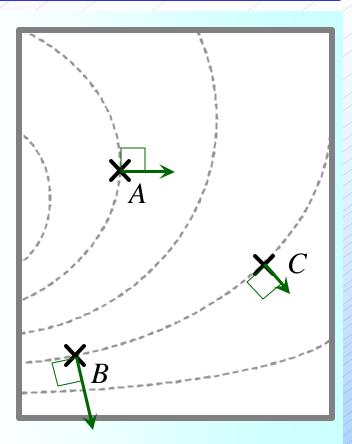
in intermediate mechanics

A force $\vec{F}(\vec{r})$ is conservative if and only if:

- the work by that force around any closed path is zero
- the vector curl of the force is zero at all locations
- a potential energy function $U(\vec{r})$ exists so that $\vec{F} = -\vec{\nabla}U$

(generalization of $\vec{E} = -\vec{\nabla}V$ from electrostatics)

"Equipotential map" task


Intermediate mechanics, GVSU

After all lecture instruction in introductory E&M

In the region of space depicted at right, the dashed curves indicate locations of *equal* potential energy for a test charge $+q_{test}$ placed within this region.

It is known that the potential energy at location *A* is *greater than* that at *B* and *C*.

- A. At each location, draw an arrow to indicate the <u>direction</u> in which the test charge $+q_{test}$ would move when released from that location. Explain.
- B. Rank the locations *A*, *B*, and *C* according to the <u>magnitude</u> of the force exerted on the test charge $+q_{test}$. Explain your reasoning.

(Qualitatively correct force vectors are shown.)

Equipotential map task: Results

Intermediate mechanics, GVSU (N = 43, 6 classes)

After all lecture instruction in introductory E&M

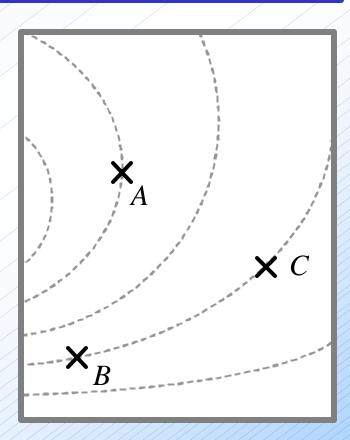
Percent correct with correct reasoning:

(rounded to nearest 5%)

Part A (Directions of force vectors)	50%	(22/43)
Part B (Ranking force magnitudes)	20%	(8/43)
Both parts correct	10%	(5/43)

Similar results have been found elsewhere with similar student populations (e.g., U. Maine, Seattle Pacific U.)

Equipotential map task: Results


Intermediate mechanics, GVSU

After all lecture instruction in introductory E&M

Most common *incorrect* ranking: $F_A > F_B = F_C$

Example: "The amount of force exerted on q_{test} is dependent on the size of the potential at the point q_{test} is placed."

Example: "Since *F* is proportional to *V*, higher *V* means higher *F*."

Failure to discriminate between a quantity (potential energy U) and its rate of change (force $\vec{F} = -\vec{\nabla}U$) **Using research to improve student learning:** *Tutorials in Intermediate Mechanics*

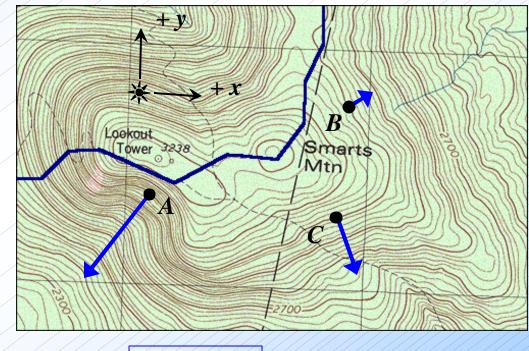
- Collaborative NSF-CCLI project at GVSU (Ambrose) and U. Maine (Wittmann)
- Modeled after *Tutorials in Introductory Physics*

(by McDermott, Shaffer, and the Physics Education Group at the University of Washington, Prentice Hall, 2001)

- Research-based targeted-inquiry activities
 - Address specific conceptual difficulties
 - Connect concepts to real world and to mathematical formalism

Topics from *Tutorials in Intermediate Mechanics*

In development at GVSU*

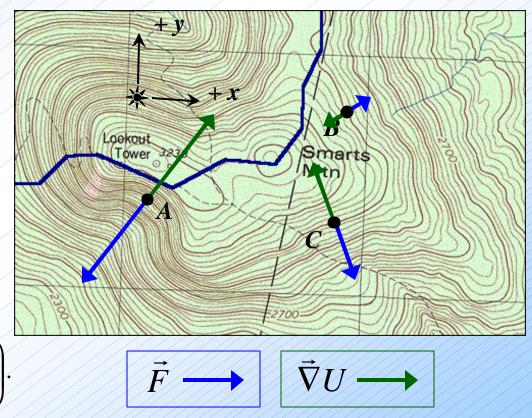

- **Simple harmonic motion** (1 tutorial)
- Newton's laws and velocity-dependent forces (1 tutorial)
- **Damped harmonic motion** (2 tutorials)
- **Driven harmonic motion** (1 tutorial)
- Phase space diagrams (3 tutorials)
- Conservative force fields (1 tutorial)
- Harmonic motion in two dimensions (1 tutorial)
- Accelerating reference frames (3 tutorials)
- Orbital mechanics (2 tutorials)

^{*} Ambrose, "Investigating student understanding in intermediate mechanics: Identifying the need for a tutorial approach to instruction," *Am. J. Phys.* **72** (2004).

Overview of tutorial: Conservative forces and equipotential diagrams

For the three labeled locations (A - C), students:

- Rank locations according to *slope*
- Rank locations according to *net force* (neglecting friction)
- Determine *direction* of net force



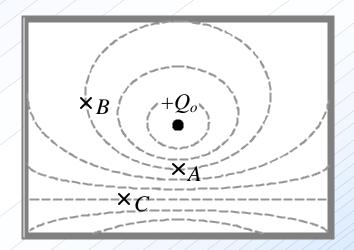
Overview of tutorial: Conservative forces and equipotential diagrams

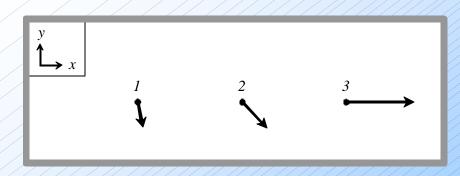
For the three labeled locations (A - C), students answer:

- *In words*, how would you calculate $\frac{\partial U}{\partial x}$ and $\frac{\partial U}{\partial y}$?
- Is $\frac{\partial U}{\partial x}$ pos, neg, or zero?
- Is $\frac{\partial U}{\partial y}$ pos, neg, or zero?
- Compare $\left|\frac{\partial U}{\partial x}\right|$ and $\left|\frac{\partial U}{\partial y}\right|$.

• Draw
$$\vec{\nabla}U = \left(\frac{\partial U}{\partial x}\hat{i} + \frac{\partial U}{\partial y}\hat{j}\right)$$

Examples of assessment questions


On written exams after tutorial instruction


Task: Given equipotential map, predict directions and relative magnitudes of forces.

GVSU: 6/8 correct (Fa 2004) SPU: 7/11 correct (Wi 2006)

Task: Given several forces, sketch a possible equipotential map and rank points by potential energy.

GVSU: 4/7 correct (Fa 2005)

Role of tutorial homework

Students explicitly *reflect upon* and *apply* results from tutorial

Effectiveness of tutorial was enhanced by adding this HW problem:

Consider the following statement:

"For a conservative force, the magnitude of the force is related to potential energy. The larger the potential energy, the larger the magnitude of the force."

Do you *agree* or *disagree* with this statement?

- If you agree, state so explicitly. Explain your reasoning.
- If you disagree, use your results from this tutorial to provide <u>at least</u> <u>three (3)</u> specific counterexamples. Explain your reasoning.

Implications for instruction

- Advanced students often experience persistent conceptual and reasoning difficulties in physics.
 - Students often fail to discriminate between a quantity and its (temporal or spatial) rate of change.
- Student difficulties must be addressed *explicitly* and *repeatedly*.
 - Students must be guided to recognize what " ∇U " means and what it *doesn't* mean.
- A guided inquiry tutorial approach to instruction can enhance conceptual understanding and reasoning ability.

Special acknowledgements

- Michael Wittmann (University of Maine)
- Stamatis Vokos, John Lindberg (Seattle Pacific University)
- Lillian C. McDermott, Peter Shaffer, Paula Heron (U. of Washington)
- Juliet Brosing (Pacific University), Brant Hinrichs (Drury University), Dawn Meredith (University of New Hampshire), Carrie Swift (University of Michigan-Dearborn)
- National Science Foundation